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THE FORCING OUT OF SALINE WATER BY FRESH WATER DURING FILTRATION 

FROM A MOLE IRRIGATORss 

E.N. BERESLAVSKII 

The question of the possible dimensions of the lens of fresh waters 
which is formed during filtration from a mole irrigator is investigated 
using Polubarinova-Kochina's method /l/ based on the analytical theory 
of differential equations. The problem reduces to an investigation of 
an ordinary second-order linear differential equation of the Fuchs class 
where fundamental difficulties arise during its integration. The 
difficulties are primarily due to the fact that this equation belongs to 
a class which has not been thoroughly studied and, also, due to the fact 
that the coefficients of the equation contain unknown parameters, the 
determination of which is one of the basic and most difficult problemsof 
the whole theory. 

A method is proposed for setting up the integrals and for 
determining the unknown constants for one class of Fuchs equations with 
four singular points. It is shown that the Fourier method /l, 2/ also 
yields similar results in the case under consideration. Results of 
numerical calculations are presented together with an analysis of the 
effect of the decisive physical parameters of the scheme on the 
filtration characteristics. 

A fairly complete bibliography of papers dealing with the study of 
different mathematical models of irrigation within the soil is contained 
in the review /3/. 

1. Formulation of the problem. Planar steady state filtration from a mole 
irrigator takes place in the lens of fresh waters which is formed in a homogeneous and 
isotropic layer of soil over stationary saline ground waters. The entrance of water into the 
lens is compensated by its evaporation from the free surface at a constant intensity a (#O) 
which is related to the filtration coefficient of the ground. In the initial treatment we 
shall replace the irrigator by a point source located at a point A. In view of the symmetry 
of the problem, it is sufficient to confine ourselves to the right half of the domain of the 
motion z=s+iy which is depicted in Fig.1. 

The problem involves determining the depression curve 
CDand the line of separation BC subject to the following 

YI boundary conditions: 

AB: z = 0, $ = 0; BC: cp - py =: H + (1 + p) H,, II, = 0 (1.1) 

CD: ‘p + y = H, q + E.Z = ‘ltQ; AD: x = 0, $ = 'ISQ 

P=df%--1~ P>" 

Here 'p and 9 are mutually selfadjoint harmonic func- 
tions within the domain z and are velocity potential and 

Fig.1 
stream function referred to the coefficient of filtration of 
the ground, p1 and p1 are the densities of the fresh and 
saline waters and Q is the required filtration flow rate per 

unit length of the irrigator referred to the filtration coefficient. 
By putting x = L in the second condition for the part CD, we get 

Q = 2eL (I.21 
This relationship expresses the equality of the flow rate from the irrigator and the 

amount of evaporation from the free surface under steady-state filtration conditions. 
The auxiliary variable & = 5 + ill and the following functions are introduced: 2 (5)7 

which conformally maps the upper half plane onto the domain z (the correspondence of the 
points is indicated in Fig.Z,al,the complex velocity 1u = doidz and, also, 
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F (E) = dwid& Z (E) = dzig 
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(1.3) 

Fig.2 Fig.3 

2. Construction of the function w. The domain, over which the complex velocity 
changes, corresponding to the boundary conditions (1.1) is shown in Fig.3. This domain is a 
curved quadrilateral BCGD with right angles at the vertices B and D, an angle arv = arccos 

[(2& + PE - p)/(p (1 i- a))] at the vortex c so that zc = [l/~ (p + 1) (p - a) - ie]/(p + 1 - E) and an 
angle of 2n at the vertex of the cut G. 

It is well-known /l, 4/ that the problem of the conformal mapping of a curved quadrilat- 
eral onto the upper half plane is intimately associated with a certain linear second-order 
differential equation of the Fuchs class with four singular points. In the case being 
considered, this equation has the form 

It is also known /l, 4/ that difficulties of a fundamental nature arise during the 
integration of equations of this type, associated with the fact that, apart from the 
undetermined quantity g, the coefficients of Eqs.(2.1) also contain the so-called accessor 
parameter h regarding which there is also no a priori knowledge. These parameters, which 
cannot be completely determined from a specified quadrilateral, have to be found at the same 
time as the integrals are constructed and, up to the present time, there is no sufficiently 
general and convenient method for determining them. In order to study the properties of the 
integrals it is therefore necessary to use different indirect methods. Here, papers /5, 6/ 
should first be noted in which the problem of linear conjunction was used to construct 
certain solutions. 

We shall show that, in the case under consideration, solutions of Eq.(2.1) can be found 
directly and, moreover, in terms of elementary functions. Let us make the change of 
variables 

5 = th2 t (2.2) 
in Eq.(2:1) which transforms the upper half plane 5 into the half band u>O, O< v(ni2 
of the plane t=u+iv (Fig.2,b) and seek the solution of the resulting equation in the 
form 

1+Y 
v, = (C, ch tch vt + C, sh t shvt)/ch t (2.3) 

where Cr and Cz are certain arbitrary constants which do not vanish simultaneously. It can 
be shown that the result of the substitution of (2.3) into the transformed Eq.(2.1) vanishes 
identically if the following two conditions are satisfied: 

gv [(v - 1) c, + 2&l - AC1 = 0 

g (2 + v - v”) c, - AC, = 2 (C, - VC,) 

(2.4) 

The required parameters g and h are found from this system. 
A second linearly independent solution is constructed in an analogous manner 

v1 = (C,cht sh vt + C, sh tchvt)lch t (2.5) 

A function which conformally maps the half band of the plane t onto the curved quadrilat- 
eral of the plane w must be expressed in terms of a ratio of linear combinations of v1 and us. 
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If such combinations are made up and use is made of the matching of the points 6. L' <ind .L, 
in the t and z planes, we get 

U’ I’E’il (t):i2 (11, i, (0 cl1 t SII \‘f i- 

(‘St1 t cl1 vt, je (t) = cl1 1 (cl1 vt -t I’i’ 511 VI) t 
c St1 t (Yh 2’t 7 iy ct1 Yf) 

1’ = I/E,.[(() 7 l)(p -- E)I, c .=: clg u (1 - ytg Ya),(y mt &vu) 

(2.G) 

An analysis of expression (2.6) shows that the function w attains its extremum on the 
side CD of the quadrilateral when h-l ( C ( - 1 or O<C<1 which corresponds to g>l 
(the cut shown in Fig.3 corresponds to this case). When - 1~ C( --h or C>l, the 
parameter g<l and the extremum of the function W is attained on the side BC (the broken 
line cut in Fig.3 corresponds to this case). 

We note that, if Eqs.(2.4) are considered as a system in C, and C,, then, in order that 
the homogeneous system should have a non-zero solution, it is necessary and sufficient that 

its determinant should not be equal to zero, i.e. 

.\ = h" - 2h [I my_ g (v' - y - 1)1 + 2, (1 j- v)g ](I - V)(" - (2.7) 

v)g--']=O 

It is curious that (2.7) is identical to the well-known Polubarinova-Kochina condition 
for the point G which is the end of the cut c/l/, p.255). 

3. Construction of the functions F and Z by the PoZubarinova-Kochina method. 

According to this method /l/, the functions F and Z are the solutions of a certain linear 
second-order differential equation of the Fuchs class with regular singular points which are 
the singular points of the functions o and z such that 

~2 = F!Z (3.1) 
By determining the indices of the functions F and Z around the singular points we find 

that these functions are linear combinations of the two branches of the following Riemann 
function: 

1 
-P 

(5 t :4) 1VE (I- 5)“” 

where 2, is the solution of Eq.(2.1). 
Using (3.2), (3.1) and (2.2), we find that 

” k----- (5 i- Ea) r/E (1 - u’+” 
(3.2) 

dw A fl (t) dz A fz (I) 
df h- (t) ’ dt=-- w k-(t) 

(3.3) 

h, (t) = cl; 2t -k cos 2~2, A > 0, a =- arctg i/r 

It can be checked that the functions (l-3), which are defined on the basis of the 
relationships (3.3) and (2.2), satisfy the boundary conditions (1.1) which are written in 
terms of the above-mentioned functions and are therefore a parametric solution of the initial 
boundary value problem. 

4. Second method. Finding the functions P and Z by the Fourier integral method. 
In the case under consideration the shape of the domain z also enables one to solve the 

problem using a Fourier integral. In order to satisfy the boundary condition ImF=O on 
the line of separation, we put an equal flow rate symmetric point sink on the imaginary axis 
below this boundary and apply the so-called method of mirror images /l, 2, 7, 81. We seek 
the functions F and Z in the half band of the plane t (Fig.2,b) in the form (here and 
subsequently, integration with respect to a is carried out from 0 to m) 

dzldt =: 5 IC, (a) cos at + iC, (a) sin at1 da 

doldt = (L-c-‘Q Ill(t - ia) + ll(t + ia)l + s C, (a) sin c&a 
(4.1) 

where ci (a) (i = 1, 2, 3) are certain unknown functions which are to be determined. It is 
obvious that, for any Ci (a), the functions F and Z satisfy the boundary conditions (1.1) 



on the sides AB and AD 
these functions. 

In order to use 
the following integral 
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and the second condition on the side BC which is written in terms of 

the remaining three boundary conditions subsequently, we shall employ 
representations (/9/, p.491): 

t f se- "Gsinatda, v<a 

We now take account of the fact that the straight line u=o corresponds to the line 

of separation BC in the t-plane while the line U = nl2 corresponds to the depression 

curve. By separating the real and imaginary parts in the expressions for F and Z and satisfy- 
ing the boundary conditions on CD, which have not been usedup to now, and the first condition 
on BC, we get a system of linear algebraic equations for finding the unknown functions CI (a) 

sh '!,naC, (a) - ch 'i,na [C, (a) f C, (a)] = r~-~Qe-'l~nach aax (4.2) 
pC, (a) - C, (cc) = n-'Qe-m 

E ch’iznaC, (a) - sh '/,na [EC, (a) - C, (cc)]= n-lQe-‘l.na ch aa 

By solving system (4.2), the determinant of which can be shown to be non-zero, we find 

ci (4. By introducing the resulting values of Ci (a) into Eqs.(4.1) and making use of the 
well-known (/9/, p.519) values of the integrals, we finally get 

do 
~T=~[B~sh(l+~)f+B~sh(l-v)tl, -$=-&&x 
{BI [ch (I + v) t + iy sh (1 $ v) t] - B, [ch (I - v) t - iy sh (1 - v) t]) 

I B, = ces (1 -v) a + y sin (1 - v) a, B, = cos (1 + V) a - 

- y sin (1 + v) a 

By taking account of the fact that C = (B, +&MB, -&) and introducing the constant 
A which is connected with the flow rate Q by the relationship 

Q = nA [2 sin a (sin av + y cos av)l-' (4.4) 

we again arrive at (3.3). 

5. Catcutation of the tens. Discussion. Eqs.(3.3) constitute a parametric solution 
of the problem in the case of the source. Let us now extend the results which have been 
obtained to the case of an irrigator with a small cross-section which is close to being 
semicircular. In order to do this, we shall take, as the contour of the irrigator, the line 
of equal head which passes through the upper point of the cross-section of the irrigator MO 
with the coordinates 5 = 0, y = ‘l,D, where D is the diameter of the irrigator and denote the 
affix of this point in the t-plane by u (Fig.2,b). We shall assume that the head is equal 
to h, on the contour of the irrigator. Eqs.(3.3) then contain three unknown constants a, 
p and A. The radius of the irrigator ‘i,D, the head acting on its contour h, and the depth 
HO of the initial (up to the formation of the 1ens)surface of the saline ground water, for 
which we have the following equation /l/z 

LH, = - [ yBC (5) ds 
II 

(5.1) 

serve to determine these constants. 
By integrating (3.3) along the corresponding parts of the boundary of the domain t, we 

get 

‘Jr n 

h, = A 
s 

[COST sinvr _t Csinzcosvt] & 

II 
(5.2) 

+D=+. [ 
c 

COST (COSVT - y sinvz)-C sinz(sinvz + Ycosvr)]-$j- 
u 
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The system of Eqs.(5.1) and (5.2) determine the required parameters. After they have 
been found, the magnitude of the flow rate Q is determined using formula (4.4), the width of 
the lens is determined using formula (1.2), and the thickness (power) of the lens at the 
maximum cross-section T =: H 7 H,, where H is the maximum height of the depression curve, 
H, is the greatest distance between the boundary of separation and the level at which the 
foundation of the irrigator is laid while H, is the smallest distance. Dimensionless 
quantities were used: all the linear characteristics (the dimensions of the lens I,. II. JJI,. II, 
and T, including the filtration flow rate) are relative to the magnitude of N,. while the 
previous notation is retained for these quantities. 

Let us now derive the parametric equations for the coordinates of the two required 
boundaries on the lens (0 < + < -t m): 
in the case of the free surface CD 

in the case of the surface of separation EC 

(5.3) 

(3 . ‘t) 

The depression curve and the line of separation calculated when E r 0.08; p = 0.3; H, = 
0.5;D = 0.4 and h, = 0.5 are shown in Fig.1. The results of calculations of the dimensions 
of the lens L and T and of the flow rate Q for certain values of the parameters s, P> u 
and h, are shown in Tables 1 and 2. The tables consists of several sections in each of 
which one of the above-mentioned parameters is changed while the remaining parameters are 
fixed at the values of e = 0.01; p := 0.1; H, 7-c 1.0; D = 0.3 and h, -1 0.4. 

Table 1 

Table 2 

The results in Table 1 enable one to draw certain conclusions regarding the effect of 
the parameters E and p on the dimensions of the lens. It is seen that as E becomes 
smaller, the lens increases in size, mainly by becoming wider, since the increase in L is 
proportional to lie (see (1.2)). As p decreases, that is, there is a weakening of the 
support on the part of the saline waters, a considerable increase in the thickness of the 
lens is observed, that is, the lens now mainly becomes deeper. We note that, as far as the 
effect of the parameters E and p is concerned, a certain similarity can be seen between the 
lens being discussed and the lenses in channels which have been described in /lo/. 

The calculations presented in Table 2, which study the effect of the diameter D and the 
magnitude of the head h, on the shape and dimensions of the lenses, show that there is a 
direct proportionality, between the magnitude of L and T. 

The behaviour of the point of inflection G, which is marked in Fig.1 with a small cross, 
is of particular interest. It is found that, as the parameter p is increased for fixed 
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values of e and H,, the point of inflection G moves along the free surface (according to the 
results of Sect.2, g>l in this case) and subsequently passes onto the line of separation 

(then g< 1). In the example cited in Fig.1, the point of inflection G is located on the 
line of separation and has the coordinates x = 2.128 and y = -0.961. 

The author thanks D.F., Shul'gin for advice and comments which helped to improve this 
paper. 
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ESTIMATES OF THE FLOW RATE CHARACTERISTICS IN THE THEORY OF 
FILTRATION AND HEAT CONDUCTION4t 

M.M. ALIMOV and E.V. SKVORTSOV 

In developing the approach proposed in /l, 2/, it is shown that it 
is possible to obtain estimates of the flow rate characeristics in the 
case of spatial, stationary linear filtration of an incompressible fluid 
in an inhomogeneous porous medium. The volume of the filtration domain 
and the area of a segment of a boundary of indeterminate form are 
employed as the decisive geometric characteristics (in the planar case, 
it is the area of the domain and the length of a segment of the boundary 
of indeterminate form). The corresponding boundary value problems are 
formulated. The subdomains of the domain of existence of a solution in 
which the extremal estimate is a lower estimate are indicated. An 
example is given. 


